Tutorial
UAV Design Example

Aeolus ASP 3.11
January 2019
www.aeolus-aero.com
Welcome

Summary
In this tutorial, a simple Unmanned Aerial Vehicle (UAV) will be designed for a given mission to familiarize with the basic steps of modelling, analysis and optimization in Aeolus ASP.

Prerequisites
• Aeolus ASP 3.11
• Quick Start tutorial recommended

Contents
• Product Requirements
• Initial Design
• Analysis of the Initial Design
• Wing Shape Optimization
• Static Stability
In this example, the objective is to design an UAV for **aerial mapping** and **wildlife protection** with high aerodynamic efficiency for low energy consumption and long range. The design shall be based on the following top level requirements:

Mass and Dimensions
- Take-off mass: 6 kg
- Max span: 1.5 m

Mission
- Cruise speed: 30 m/s
- Cruise altitude: 1000 m MSL
- Longest range possible

Flight mechanics
- Static longitudinal stability margin: 2% - 4%
Product Requirements
Initial Design

Select “Airfoil Catalogue”

Inspect available airfoils through the dropdown list or the buttons
Initial Design

Select the NACA4415 for the main wing.

The relatively large nose radius typically provides good stall characteristics.

The flat bottom side facilitates manufacturing.
In this example, only 2 sections are required. You can remove the 3rd section of the default wing here.

Select “Geometry” to start modelling the main wing.
Apply the NACA4415 to both sections.
The total span must not exceed 1.5m. So we can set the half-span to 0.75m.

As a first test, let’s try a chord of 0.2m for both sections.

Note: The wing is symmetric. Section 0 is at the wing root. Section 1 is at the right-hand side wing tip.
Initial Design

Main requirements of a horizontal tail plane (HTP)
- Provide aerodynamic forces to ensure static and dynamic longitudinal stability
- Pitch control for manoeuvres
- Trim for steady flight at different speeds

Positioning of the HTP:
X: Typically, the HTP is located downstream of the main wing at a distance of 40-50% of the wing span. With a wing span of 1.5 m we can assume x= 0.7 m.
Y: Use y= 0 for a symmetric aircraft
Z: The HTP should be at a sufficiently high z-position to avoid turbulences from the propeller hitting the HTP and causing vibrations. Assume z= 0.2 m.

Surface and aspect ratio: As a rule of thumb, assume 10% of the main wing. That is ≈ 0.03 m². In view of the aircraft stall characteristics, the HTP must stall later than the main wing. Therefore, the aspect ratio should be smaller than the aspect ratio of the main wing.

Airfoil: The HTP must be able to provide positive and negative lift forces. Symmetric airfoils, such as the NACA0012 are preferred as they provide good stall characteristics for positive and negative angles of attack.
Tail planes are also considered as wings. Please select the “Wings”-node to add a horizontal tail plane.

The “+”-button adds a dummy wing which we will change to the horizontal tail plane (HTP) in the following...
Initial Design

For convenience, rename the new wing to HTP

Each new wing gets a random color. Click here to pick your preferred color.
Select the “Geometry”-Node of the HTP

Enter its position
X = 0.7 m
Y = 0 m
Z = 0.2 m
Apply the NACA0012 Airfoil to both HTP sections.

Now, span and chord can be changed to reasonable values:
- Semi-span: 0.2 m
- Root chord: 0.1 m
- Tip chord: 0.05 m
We have defined span and chord dimensions such that:
- The HTP’s projected area is 10% of the main wing
- The HTP’s aspect ratio is smaller than the main wing’s aspect ratio
The sweep angle is 0° and refers to 25% chord.

Currently, the HTP’s trailing edge is kinked, due to the taper.
Finally, we want to make the trailing edge straight to install a single plain flap.

Therefore, set the reference chord position to 100% (trailing edge)
You have completed the initial geometry definition.

Continue with the next node “Flight Condition” in the model tree.
Which flight condition should be modeled?

There is a number of different flight conditions at which the aircraft should be analysed in view of performance and stability. For example

- Cruise
- Take-off and landing
- Maneuvers
- Loiter

In this tutorial, the defined mission is aerial mapping. We can expect that the aircraft will be operated in cruise flight most of the time, and that the aircraft performance largely depend on it’s cruise flight characteristics.

So it is a good starting point to tailor the global wing dimensions to this primary condition in a first step.
Initial Design

Enter the cruise flight parameters:

- **Aircraft weight:**
 6 kg * 9.81 m/s² ≈ 58.9 N

- **Cruise speed:** 30 m/s

- **Altitude:** 1000 m (MSL)
The viscous drag coefficient depends on the airfoil and the Reynolds number (see next slide)
The total aircraft drag D_{tot} is comprised of induced drag D_{ind} and viscous drag D_{visc}:

$$D_{tot} = D_{ind} + D_{visc}$$

Induced drag is calculated automatically in Aeolus ASP, whereas viscous drag is very difficult to predict with numerical methods and is therefore mostly based on experimental data. These data typically have the form of coefficients for viscous drag $C_{d,visc}$ and allow the computation of the viscous drag force from

$$D_{visc} = q \; S_{wet} \; C_{d,visc,wet}$$

or

$$D_{visc} = q \; S_{proj} \; C_{d,visc,proj}$$

with

- q dynamic pressure
- S_{wet} wetted wing area
- S_{proj} projected wing area
- $C_{d,visc,wet}$ viscous drag coefficient, refers to the wetted wing area
- $C_{d,visc,proj}$ viscous drag coefficient, refers to the projected wing area
In Aeolus ASP, the coefficient $C_{d,\text{visc,wet}}$ must be provided as an input in the “Flight Condition” panel.

The default value is 0.005, which is a fairly good estimation for the most fixed-wing UAV cases.

However, let us see how more reliable data can be found. Note, that $C_{d,\text{visc,wet}}$ mainly depends on
- the Reynolds number (Re) and
- the airfoil
Initial Design

Click on the “Wings”-node to go back to the 3D view.

Plot the Reynolds numbers by clicking on the Re-Button.

Read $\text{Re} \approx 400,000$ on the main wing.
Airfoil data sheets are available from various online sources, such as http://airfoiltools.com.
Initial Design

We are now looking for curves with Re = 400,000 and $N_{krit} \geq 9$ assuming a clean wing surface.

The required coefficient $C_{d,visc,proj}$ can be approximated from the value of Cd at Cl=0 as shown below:

$$C_{d,visc,proj}^{Re=200,000} \approx 0.015$$

$$C_{d,visc,proj}^{Re=500,000} \approx 0.009$$
From the results

\[C_{d,\text{visc},\text{proj}}^{Re=200,000} \approx 0.015 \]

\[C_{d,\text{visc},\text{proj}}^{Re=500,000} \approx 0.009 \]

we can approximate a value for Re = 400,000, which is:

\[C_{d,\text{visc},\text{proj}}^{Re=400,000} \approx 0.011 \]

Note, that the index “proj” is added to differentiate the database values, which typically refer to the projected area, from the Aeolus ASP coefficient \(C_{d,\text{visc},\text{wet}} \), which must refer to the wetted area. The conversion from “projected” to “wetted” can easily be done:

\[C_{d,\text{visc},\text{wet}} = C_{d,\text{visc},\text{proj}}^{Re=400,000} \cdot \frac{S_{\text{proj}}}{S_{\text{wet}}} \approx 0.5 \]

\[C_{d,\text{visc},\text{wet}} = 0.0055 \]
Finally, enter the value 0.0055 here
Initial Design

The surface pressure plot can now be inspected in view of mesh quality. Here it shows high pressure gradients close to the wing tip.

High gradients typically require a denser mesh, so let us increase the mesh density at the wing tips...

Run the analysis by clicking here
Initial Design

Select the “Discretization” node of the main wing

Use this dropdown to define, how the strips are distributed on the wing. Select “Outboard” to increase the density at the tip.

Note, that the results will be removed whenever you change the model.
The strip distribution option "Outboard" increases the panel density at the wing tip and enables a better resolution of the surface pressures in this area.
The strip distribution option “Outboard” increases the panel density at the wing tip and enables a better resolution of the surface pressures in this area.

Note the improved resolution of the surface pressure for the “Outboard” strip distribution compared to the “Constant” strip distribution.
Analysis of the Initial Design

Run the analysis by clicking here
Analysis of the Initial Design

The Lift/Drag ratio in the current flight condition is 19.4

Lift-to-drag as a function of true speed and altitude.
Analysis of the Initial Design

The Lift/Drag ratio could be increased to 20.3 at the same altitude, if the airspeed would be decreased to \(\approx 26 \text{ m/s} \).

That is, the wing is not optimized for our target speed of 30 m/s.
Analysis of the Initial Design

In view of static stability, you can plot the aerodynamic center (=neutral point) and the center of pressure (=center of gravity) here. The static margin is 1.3%. Our target is at least 2%.

AC and CoP are plotted for each wing (small) and for the entire aircraft (large).
Analysis of the Initial Design

Note: you will always find AC and CoP in the x-y-plane. That is, they might be inside the wing, just as it is in this example. If required, toggle on "wireframe" view for better visibility.
Finally, you can optimize the wing shape using the built-in optimization feature. All of the geometry parameters are accessible for optimization. To keep this example simple, only the following design variables shall be optimized:
- Root chord length
- Tip chord length
- Tip twist

According to the mission requirements, the UAV must be efficient and should fly as far as possible. Therefore, a good objective is to maximize the Lift/Drag-ratio which is a measure of efficiency.
Wing Shape Optimization

Select the “Optimization”-Node
Enable the Optimization feature here
Select “Current lift to drag”. It refers to the actual flight condition.
Here, you can find the model parameters, which can be optimized. Select the “Chord” pane from the main wing and check both sections “on”, as shown.
The optimizer is allowed to change the selected design variables within a certain range. In this example, it is believed, that a feasible wing chord will be within 0.1m and 0.3m. Therefore, use Min = 0.1 m Max = 0.3 m for both sections.
Wing Shape Optimization

The twist parameters can be accessed through the “Twist”-pane. Make sure you are on the Main wing.

Select only the tip section and give it a min value of -5° and a max value of +5°.

For convenience, the selected section is also highlighted in the 3d view.
Wing Shape Optimization

The last step is the definition of constraints. Depending on the optimization problem, constraints can be required to avoid any unfeasible results.

It is good practice to start a first optimization without any constraints. You can then inspect the result and decide which constraints are required. In our example, the optimization will result in a very small wing area and hence high local lift coefficients.

Note, that a typical airfoil stalls at approximately $c_{l,\text{max}} \approx 1.3$. Again, more specific data can be found from the drag polar, as shown in the example below:

\[
\begin{align*}
R_E &= 200000 \approx 1.35 \\
R_E &= 500000 \approx 1.45
\end{align*}
\]
Wing Shape Optimization

To be conservative, we assume

\[c_{l,max} = 1.2 \]

as the maximum lift coefficient, which the airfoil can provide before stall onset.

In view of the mission, the UAV should be able to perform a maneuver with a max load factor \(n_{max} = 2 \), for example a turn at 60° bank angle. That is, that the allowed lift coefficient in cruise is

\[c_{l,max,allowed} = \frac{c_{l,max}}{n_{max}} = 0.6 \]

You can add this constraint to the optimization through the drop-down list item „Local CL_wet“.
Wing Shape Optimization

The coefficient’s index „wet“ indicates a reference to the wetted wing area. Again, the conversion can simply be done knowing that \(\frac{S_{proj}}{S_{wet}} \approx 0.5 \).

\[
\text{Local } Cl_{\text{wet}}^\text{max} = c_{l,\text{max},\text{allowed}} \cdot \frac{S_{proj}}{S_{wet}}
\]

\[
= 0.3
\]

The penalty value is set automatically and typically does not need to be changed.
Wing Shape Optimization

Add the constraint on the local lift coefficient as shown.
Launch the optimization progress panel...

...and start the optimization
Wing Shape Optimization

The shape optimization has increased the Lift/Drag by 20%.

Note: the convergence may be different with each run. If the result has not converged you can restart through the “Restart”-button.
Wing Shape Optimization

As expected, the local lift coefficient (w.r.t the wetted area) does not exceed 0.3
In this section the static longitudinal stability of the aircraft will be tuned. A common measure for longitudinal stability is the static margin, which is defined as the distance between the center of gravity and the aerodynamic center (neutral point) of the aircraft, expressed as a percentage of the mean aerodynamic chord of the wing.

A typical value is 2%, which is also the target value for this UAV. It can be achieved by modifying the mounting angle of the HTP. The task for the designer is to find the right value for this mounting angle (sometimes also referred to as angle of incidence).

In this example, the use of the „Parameter Study“-feature will be demonstrated for this purpose. The objective is to plot the static margin for a certain range of HTP mounting angles.
Currently, all HTP sections have zero twist. That is, the mounting angle is zero.

The static margin is 13.4%. Note, that this value maybe slightly different in your model. It depends on the convergence of the previous optimization.
Enable the parameter study
Select “Static margin”
You can reduce the initial number of steps to 10

Select the “HTP” tab and then the “Twist” tab.

Check both sections “On” and set the
Min value 0 (deg)
Max value 3 (deg)
Launch the Parameter Study dialog and click “Start”

Aeolus ASP is now analysing the model at the different twist angles and plots the resulting static margin.
Read the required mounting angle for a 2% static margin.
To be conservative, a mounting angle of 1.3° is selected.

Modelling the mounting angle is the last step and finalizes the model in this tutorial.
Thank you

Dipl.-Ing. Uwe Schuster
January 2019
www.aeolus-aero.com