

Tutorial UAV Design Example

Aeolus ASP 3.11 January 2019 www.aeolus-aero.com

Welcome

Summary

In this tutorial, a simple Unmanned Aerial Vehicle (UAV) will be designed for a given mission to familiarize with the basic steps of modelling, analysis and optimization in Aeolus ASP.

Prerequisites

- Aeolus ASP 3.11
- Quick Start tutorial recommended

Contents

- Product Requirements
- Initial Design
- Analysis of the Initial Design
- Wing Shape Optimization
- Static Stability

Product Requirements

In this example, the objective is to design an UAV for **aerial mapping** and **wildlife protection** with high aerodynamic efficiency for low energy consumption and long range. The design shall be based on the following top level requirements:

Mass and Dimensions

- Take-off mass 6 kg
- Max span 1.5 m

Mission

- Cruise speed 30 m/s
- Cruise altitude 1000 m MSL
- Longest range possible

Flight mechanics

• Static longitudinal stability margin 2% - 4%

Product Requirements

G

6

Main requirements of a horizontal tail plane (HTP)

- Provide aerodynamic forces to ensure static and dynamic longitudinal stability
- Pitch control for manoeuvres
- Trim for steady flight at different speeds

Positioning of the HTP:

- X: Typically, the HTP is located downstream of the main wing at a distance of 40-50% of the wing span. With a wing span of 1.5 m we can assume x= 0.7 m.
- Y: Use y= 0 for a symmetric aircraft
- Z: The HTP should be at a sufficiently high z-position to avoid turbulences from the propeller hitting the HTP and causing vibrations. Assume z= 0.2 m.

Surface and aspect ratio: As a rule of thumb, assume 10% of the main wing. That is $\approx 0.03 \text{ m}^2$. In view of the aircraft stall characteristics, the HTP must stall later than the main wing. Therefore, the aspect ratio should be smaller than the aspect ratio of the main wing.

Airfoil: The HTP must be able to provide positive and negative lift forces. Symmetric airfoils, such as the NACA0012 are preferred as they provide good stall characteristics for positive and negative angles of attack.

Which flight condition should be modeled?

There is a number of different flight conditions at which the aircraft should be analysed in view of performance and stability. For example

- Cruise
- Take-off and landing
- Maneuvers
- Loiter

In this tutorial, the defined mission is aerial mapping. We can expect that the aircraft will be operated in cruise flight most of the time, and that the aircraft performance largely depend on it's cruise flight characteristics.

So it is a good starting point to tailor the global wing dimensions to this primary condition in a first step.

Aeolus - Aero Sketch Pad V3.10 : 4 Outple Sketch File Jamest Functions View Dist Utility, Satisana Hala	-	o ×
File Run View View View View View		
Mintoi Catalogue	Flight condition	
-→ Wings	15,000	
Gaps Gaps B-∞ Flaps B-∞ Discretization	14,000	
Geometry		0.5
Construction	Enter the cruise flight	
Computation		
© Optimization	parameters:	
Level Parameter study		
kesults		
larget Lift	- Aircraft weight:	
Aircraft weight 58.9 [N]		
Load factor 1.0 [-]	6 kg * 9.81m/s ² ≈ 58.9 N	
Target lift 5.890e+01 [N]		
Dynamic Pressure		
Fluid Air 🗸		
True speed 30.0 [m/s]	- Cruise speed: 30m/s	
Altitude 1000.0 [m]	Cruise speed. Jointys	
Density 1.111e+00 [ka/m³]		
Dynamic pressure 4.998e+02 [Pa]		
Estimation of Lift Coefficient and Mach Number	(1/1)	
Cl 0.3571 r.1		
ma 0.089 [-]		
Viscous Drag		
Dynamic viscosity 1.762e-05 [Pa s]		
Kinematic viscosity 1.586e-05 [m ² /s]		
Reynolds number min 9,707e+04 [-]		
Reynolds number max 3.783e+05 [-]		0 145 15
Viscous drag coefficient 0.005 [-] (refers to wetted area)	True speed [m/s]	
V 01 40y	▼ Flight condition — Lift coefficient — Mach number	

The viscous drag coefficient depends on the airfoil and the Reynolds number (see next slice)	Aeolus - Aero Sketch Pad V3.10 : 4	- Ø
Fight condition Fight	Bun	Venny sensing repr
Flight condition Flight condi	□ □ ○ <i>?</i> ○ ■	🖞 🖸 🖓 🔊 🔊 🖉 🖉 🖉 🖉 🐨 🐨 🖉 🖉 🖉 🖉 🐨 🐨 🐨 🐨 🐨 🖉
<pre>show we we</pre>	irfoil Catalogue	Flight condition
<pre>Note of the second of the</pre>	🔨 Wings	15,000
<pre></pre>	Wing 0	14,500
13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 10.000 13.000 10.000 13.000 10.000 10.000 9.000 10.000 9.000 10.000 9.000 10.000 9.000 10.000 9.000 10.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 10.000 10.000 9.000 10.000 10.000 10.000 10.000 10.000 9.000 10.000 10.000 10.000 10.000 10.000 10.000 <td>Geometry</td> <td>14,000</td>	Geometry	14,000
<pre>http://withouter.minipublic in the interview of the</pre>	Biscretization	13,500
<pre> Preater with restrict restric</pre>	HTP	
<pre>server state Construction</pre>	Geometry	12,500
Subscription Observation Observation Observation Premeter hardy obs etch star etch star star <tr< td=""><td>Generation</td><td></td></tr<>	Generation	
Domension Preventer ruly of sale	Flight Condition	
youndaring yound	Computation	
is a loss of the service of the serv	Parameter study	
Alls etch etch escarture grave etch escarture grave etch escarture grave etch escarture grave etch escarture grave escarture grave	eck	
etit saftweight <u>530</u> M decive <u>10</u> 0 servet <u>5000</u> servet <u>5000</u> decive <u>300</u> M servet <u>5000</u> servet <u>10000</u> M servet <u>100000</u> M servet <u>10000</u> M servet <u>100000</u> M	sults	
And a strain which is a set of the set of th	a+116	9,500
raft weight 95 0 0 d factor 10 0 peift 5800-00 0 d	eturt	9,000
d factor 10 [] getif 5.806+61 [M] mic Presure	raft weight 58.9 [N]	
get ft 5.500-01 01 02	d factor 1.0 [-]	$E_{3,000}$
are Pressare 30.0 [ms] d image 30.0 [ms] se speed 30.0 [ms] state 1111e-00 [ps] state 1111e-00 [ps] state 0.09 [d] state 0.09 [d] state 1.762e-05 [ms] state 1.762e-05 [ms] </td <td>get lift 5.890e+01 [N]</td> <td></td>	get lift 5.890e+01 [N]	
d e speed 1000 [m] wity 1111600 [bg/m] wity 1111600 [bg/m] with pressure 4.998e+02 [Pa] with pressure 4.998e+02 [Pa]		
d ar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	amic Pressure	¥ 6500
aged 30.0 [m/s] hude 1000.0 [m] nsiv 1.111e+00 [sg/m ³] namic pressure 4.998e+02 [Pa] namic pressure 0.3571 [-] 0.039 [-] Intervise on the airfoil and the pressure namic viscosity 1.762e+05 [Pa] node number ma 3.703e+05 [Pa] node dag coefficient 0 5 10 15 20 25 20 25 20 25 20 25 20 25 20 25 20	id Air 🗸	
ade 1000 mil 5,000	e speed 30.0 [m/s]	
sty 1.11E+00 [g/m ³] anic pressure 4.998e+02 [Pa] ation of Lift Coefficient and Manuber 0.3571 [-] 0.059 [-] us Drag anic viscosity 1.762e-05 [Pa] anic vis	tude 1000.0 [m]	5,500
The viscous drag coefficient depends on the airfoil and the depends on the airfoil and the Reynolds number (see next slide) 0 5 10 15 20 25 20 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	vity 1 1110+00 [kg/m3]	
The Viscous drag coefficient atom of Lift Coefficient and Mach Number atom of Lift Coefficient and Mach Number	amic preprinte 4 998e ±07 [Pa]	The viewous due coefficient
alada of ult Coefficient 1,752-05 [P3 6] and survey maximized sources from the surface of the s	initic pressure 4.550e+62 [Fb]	I ne viscous drag coefficient
depends on the airfoil and the support name: viscestly 1.752+05 [m³/6] mode number mi 3.703+e40 {-1} support number mi 3.703+e40 {-1} sup	nation of Lift Coefficient and Mach Number	
0.099 [-] sus Drag Inside-105 namic viscosity 1.752e-05 mark viscosity 1.556e-05 mode multiple min 9.707e+04 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 True speed [m/s]	0.3571 [-]	depends on the airtoil and the
Support Reynolds number (see next namic viscosity 1.762-05 issector [m]/i ynolds number mis 3.762-05 ynolds number mis 3.762-05 jourgeficient 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 rule speed [m]/s] 0 5 10 15 20 25 30 35 40 45 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	0.089 [-]	
namic viscosity 1.752e-05 [Pa s] medic viscosity 1.556e-05 [m ² /d] ynolds number ma 3.783e+05 [] toous drag coefficient 0.005 [] 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 True speed [m/s]	ous Drag	Reynolds number (see next
and viscosity 1.586-05 [m*/6] genetic viscosity 1.586-05 [m*/6] ynolds number mis 3.763e+05 [] outs drag coefficient 0.005 [] 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 True speed [m/s] 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	- namic viscosity 1.762e-05 [Pare]	Reynolds humber (see next
SIICE) SIICE solds number min 9.707e144 [-] solds number mi	amplic viscosity 1.702000 [Pd S]	
molds number max 3,783e405 [-] 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140	enable viscosity 1.500e-05 [M*/S]	Slide)
noos numeer max 3,743e403 [] 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 True speed [m/s]	noias number min 9.707e+04 [-]	
xxxx drag coefficient 0.005 [-]	eynolds number max 3.783e+05 [-]	× 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 1
rue apecu [in/a]	cous drag coefficient 0.005 [-]	True speed [m/s]
rers to wetted area)	ters to wetted area)	V Flight specific Address High specific Addr

The total aircraft drag D_{tot} is comprised of induced drag D_{ind} and viscous drag D_{visc} :

$$D_{tot} = D_{ind} + D_{visc}$$

Induced drag is calculated automatically in Aeolus ASP, whereas viscous drag is very difficult to predict with numerical methods and is therefore mostly based on experimental data. These data typically have the form of coefficients for viscous drag $C_{d,visc}$ and allow the computation of the viscous drag force from

$$D_{visc} = q \; S_{wet} \; C_{d,visc,wet}$$

or

$$D_{visc} = q \; S_{proj} \; C_{d,visc,proj}$$

with

q	dynamic pressure
S _{wet}	wetted wing area
S _{proj}	projected wing area
$C_{d,visc,wet}$	viscous drag coefficient, refers to the wetted wing area
$C_{d,visc,proj}$	viscous drag coefficient, refers to the projected wing area

In Aeolus ASP, the coefficient $C_{d,visc,wet}$ must be provided as an input in the "Flight Condition" panel.

The default value is 0.005, which is a fairly good estimation for the most fixed-wing UAV cases.

Dynamic viscosity	1.792e-05	[Pas]
Kinematic viscosity	1.483e-05	[m²/s]
Reynolds number min	1.038e+05	[-]
Reynolds number max	4.0450+05	[-]
Viscous drag coefficient	0.005	[-]
(refers to wetted area)		

However, let us see how more reliable data can be found. Note, that $C_{d,visc,wet}$ mainly depends on

- the Reynolds number (Re) and
- the airfoil

Airfoil data sheets are available from various online sources, such as <u>http://airfoiltools.com</u>. Search for NACA4415 and click on "Airfoil details" (<u>http://airfoiltools.com/airfoil/details?airfoil=naca4415-il</u>).

Airfoil database search		
Search the 1636 airfoils available in the databa preview picture. There are links to the original numbers.	ases filtering by name, thicknes airfoil source and dat file and th	s and camber. Click on an airfoil image to display a large te details page with polar diagrams for a range of Reynol
Text search	NACA4415	Optional
Maximum thickness(%)		Optional
Minimum thickness(%)		Optional
Maximum camber(%)		Optional. Symmetrical airfoils = 0
Minimum camber(%)		Optional
Group	All 🗸	
Sort	Key (a to z)	$\overline{}$
Search		
Investment (▷ Investment Cai × Factory Price. t	Casting OEM - Manufacturers To sting Manufacturers To Custom Made tiangongjm.com	b Custom Made t, Good Quality, OPEN
(naca4415-il) NACA 4415		Airfoil details
	AirfoilTools.com	Add to comparison
	Max thick Max cam	ness 15% at 30.9% chord Lednicer format dat file ber 4% at 40.2% chord Selig format dat file
NACA 4415	Source U	IUC Airfoil Coordinates Database Source dat file
	Page 1 of 1	

We are now looking for curves with Re = 400,000 and $N_{krit} \ge 9$ assuming a clean wing surface.

The required coefficient $C_{d,visc,proj}$ can be approximated from the value of Cd at Cl=0 as shown below:

From the results

 $C_{d,visc,proj}^{Re=200,000} \approx 0.015$ $C_{d,visc,proj}^{Re=500,000} \approx 0.009$

we can approximate a value for Re = 400,000, which is:

 $C_{d,visc,proj}^{Re=400,000}\approx 0.011$

Note, that the index "proj" is added to differentiate the database values, which typically refer to the projected area, from the Aeolus ASP coefficient $C_{d,visc,wet}$, which must refer to the wetted area. The conversion from "projected" to "wetted" can easily be done:

$$C_{d,visc,wet} = C_{d,visc,proj}^{Re=400,000} \underbrace{\cdot \frac{S_{proj}}{S_{wet}}}_{\approx 0.5}$$

$$C_{d,visc,wet} = 0.0055$$

📐 Aeolus - Aero Sketch Pa	ad V3.10 : 4			– o ×
Quick Start File Import I	xport Run View	lot Utility Settings Help		
File	Run	View		
👝 🎮 之 G			Y +2] +2 U U 🛄 U 🚛 🖵 🚧 🦋 🖉 🔤 🌆 🛞 🎋 🚽 🥏 🖉 🖏 🕼 🖉 🖉	
Airfoil Catalogue			Flight condition	
Model				
🖨 🛰 Wing 0			14,500	
Geometry			14 000	
Flaps				
			13,000	0.5
Geometry			13,000	T
Generation				
Computation				
Optimization				
Parameter study				
Results				
Target Lift				
Aircraft weight	58.9 [N]		9,000	
Load factor	1.0 [-]			
Target lift	5.890e+01 [N]			
Dynamic Pressure				
Huid Air	\sim			
True speed	30.0 [m/s			
Altitude	1000.0 [m]			
Density	1.111e+00 [kg/	n°]		
Dynamic pressure	4.998e+02 [Pa]	Einall	lly optor the value	
Estimation of Lift Coefficient	and Mach Number	Filidi	iny, enter the value in a second s	
a	0.3571 [-]		NEE horo	
Ма	0.089 [-]	0.005		
Viscous Drag				
Duppeis viesesity	1 7626 05 50-		1.500	
Dynamic viscosity	1.702e-05 [Pa			
kinematic viscosity	1.586e-05 [m ² /			
Reynolds number min	9.707e+04 [-]			
Reynolds number max	3.783e+05			30 135 140 145 15
Viscous drag coefficient	0.0055 [-]		True speed [m/s]	110 110 100
(refers to wetted area)				
			Flight condition — Lift coefficient — Mach number	

• The strip distribution option "Outboard" increases the panel density at the wing tip and enables a better resolution of the surface pressures in this area.

- The strip distribution option "Outboard" increases the panel density at the wing tip and enables a better resolution of the surface pressures in this area.
- Note the improved resolution of the surface pressure

CuickStart File Import Run View Plot Utility Settings Help File Run View	Plot Utility Colors Legend
	+z]
Computation	Lift-to-drag as a function of true speed and altitude
Optimization	15.000 1
Check	14.500-
Results	
	14,000
CI(AOA)	13,500
Col(AOA)	13,000
• Lift-to-Drag(v,h)	12,500
Cdi(Cl)	12,000
• Cd(Cl)	
Wing U	
Pressure distribution	11,000
Pressure distribution 3D	10,500
Pressure distribution 2D	10,000
Aerodynamic coefficients	9,500
	9,000
• Cu(y)	185
+ CI(AOA)	
Cdi(ADA)	
Cm(AOA)	
Elift distribution	🖞 🛱 7,000 I I NE LITT/Drag ratio in
 Lift-to-Drag(v,h) 	
	for the current flight
Approximation:	the current light
$Cd(Q) = 1.200 dQ + 7.00 dQ + 2.206e-02 Q^2$	5,500
CurrentLift/Drag = 19.41 at Cl = 0.3561	5,000 Condition is 19,4
Maximum Lift/Drag = 20.29 at Cl = 0.4801	4,500
	4,000
AOA [deg] CI [-] Cdi [-] Cd [-]	3,500
-3.000 0.0719 8.774e-04 1.222e-02 5.000 0.7326 2.788e-02 3.922e-02	3000
10.000 1.1351 6.694e-02 7.828e-02	
0.421 0.3561 7.011e-03 1.835e-02	2,500
	2,000
	1,500
	1,000
	500
	Current Lift-to-Drag at current Flight Condition

A solution A set Cluster Deal V2 10 (1)

Quick Start File Import Export Run View Plot Utility Settings Help	
	72] [72] ⊕, ♀, @] [10] [11] [12] [12] [12] [12] [12] [12] [12
Computation	Lift-to-drag as a function of true speed and altitude
	The Lift/Drag ratio could be increased to 20.3 at the same
Ca(C) Wing 0 Wing 1 Wing 2 summary Pressure distribution Pressure distribution 3D Pressure 3D Presstres 3D Pressure 3D Pressore 3D Pressure 3D	altitude, if the airpeed would be decreasded to ≈ 26 m/s. That is, the wing is not 200
Approximation: Cd(CI) = 1 - 300 - 500 - 500 - 600 - 2012 Current Lift/Drag = 19-41 at CI = 0.3561	optimized for our target speed of 30 m/s.
Meximum UHt/Drag = 20.29 at Cl = 0.4801 AOA [deg] Cl [-] Cd [-] Cd [-] -3.000 0.0719 8.774-04 1.222-02 5.000 0.7326 2.788-02 3.922-02 10.000 1.1351 6.694-02 7.828-02 0.421 0.3561 7.011e-03 1.835e-02	4,500 4,000 3,500 3,500 2,500 2,500 1,500 1,500 1,500 0
	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 True speed [m/s]

Finally, you can optimize the wing shape using the built-in optimization feature. All of the geometry parameters are accessible for optimization. To keep this example simple, only the following **design variables** shall be optimized:

- Root chord length
- Tip chord length
- Tip twist

According to the mission requirements, the UAV must be efficient and should fly as far as possible. Therefore, a good objective is to **maximize the Lift/Drag-ratio** which is a measure of efficiency.

The last step is the definition of constraints. Depending on the optimization problem, constraints can be required to avoid any unfeasible results.

It is good practice to start a first optimization without any constraints. You can then inspect the result and decide which constraints are required. In our example, the optimization will result in a very small wing area and hence high local lift coefficients.

Note, that a typical airfoil stalls at approximately $c_{l,max} \approx 1.3$. Again, more specific data can be found from the drag polar, as shown in the example below:

To be conservative, we assume

$$c_{l,max} = 1.2$$

as the maximum lift coefficient, which the airfoil can provide before stall onset.

In view of the mission, the UAV should be able to perform a maneuver with a max load factor $n_{max} = 2$, for example a turn at 60° bank angle. That is, that the allowed lift coefficient in cruise is

$$c_{l,max,allowed}^{cruise} = \frac{c_{l,max}}{n_{max}} = 0.6$$

You can add this constraint to the optimization through the drop-down list item "Local CL_wet".

Add new	>					
Local Cl_wet						
Static margin						
Left wing bending mom						
Right wing bending mor						
Aerodynamic center x-l						
Center of pressure x-P					a 11	
Center of pressure y-P	۷	Target	Min	Мах	Penalty	
Add new	~	Aircraft \checkmark				-

Constraints						
Туре	Target		Min	Max	Penalty	
Local Cl_wet	Ving 0	~		0.3	4.0	-
Add new	✓ Aircraft	~				-

The coefficient's index "wet" indicates a reference to the wetted wing area. Again, the conversion can simply be done knowing that $\frac{S_{proj}}{S_{wet}} \approx 0.5$.

Local Cl_wet^{max} =
$$C_{l,max,allowed}^{cruise} \cdot \frac{S_{proj}}{S_{wet}}$$

= 0.3

The penalty value is set automatically and typically does not need to be changed.

6

Aeolus - Aero Sketch Pad V3.10 : 5 ۵ × Quick Start File Import Export Run View Plot Utility Settings Help File Run View Utility Colors Legend 🔀 🔿 +Xİ İX, İY, -Yİ FZİ FZ 🔍 🔍 🗊 🛄 📜 🖉 🎥 🏏 cor 🗛 👽 V... 🚽 🥟 🔍 🔍 🔍 🐺 🚺 🔲 🏷 🧷 Lift coefficient (wet) E Check Results Optimization 0.31 Last evaluation 0.30 - 🔝 Aircraft Summary CI(AOA) 0.29 -
Cdi(AOA) 0.28 - • Cm(AOA) 0.27 Lift-to-Drag(v,h) 0.26 - + Cd(Cl) 0.25 🖶 📙 Wing 0 Wing Summary 0.24 Pressure distribution 0.23 Pressure distribution 3D 0.22 Pressure distribution 2D. 0.21 Aerodynamic coefficients • C(y) 0.20 Cdi(y) 0.19 Cm(y) 0.18 Cdi(AOA) 0.17 As expected, the local lift Cm(AOA) vet 0.16 ė--Efficiency C) 0.15 strip y mean [m] lift coefficient Cl,wet [-] coefficient (w.r.t the wetted 0.141.451e-02 0.2911 0.13 4.351e-02 0.2945 7.241e-02 0.2969 0.12 area) does not exceed 0.3 1.012e-01 0.2985 0.111.297e-01 0.2995 1.579e-01 0 3000 0.101.858e-01 0.3000 2.133e-01 0.2997 0.09 2.404e-01 0.2990 0.08 2.670e-01 0.2980 2.930e-01 0.2966 0.07 3.185e-01 0.2950 0.06 3.433e-01 0.2931 3.674e-01 0.2909 0.05 3.909e-01 0.2885 0.04 4.137e-01 0.2858 4.357e-01 0.2829 0.03 4.569e-01 0.2797 0.02 4.774e-01 0.2763 4.972e-01 0.2726 0.015.161e-01 0 2686 0.005.344e-01 0.2643 0.35 0.40 0.75 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.50 0.55 0.60 0.65 0.70 5.518e-01 0.2598 5.685e-01 0.2549 **y** [m] 5.845e-01 0.2497 5 999e-01 0.2440 result — approximation 1466.01 0 222

Static Stability

In this section the static longitudinal stability of the aircraft will be tuned. A common measure for longitudinal stability is the static margin, which is defined as the distance between the center of gravity and the aerodynamic center (neutral point) of the aircraft, expressed as a percentage of the mean aerodynamic chord of the wing.

A typical value is 2%, which is also the target value for this UAV. It can be achieved by modifying the mounting angle of the HTP. The task for the designer is to find the right value for this mounting angle (sometimes also referred to as angle of incidence).

In this example, the use of the "Parameter Study"-feature will be demonstrated for this purpose. The objective is to plot the static margin for a certain range of HTP mounting angles.

Static Stability

Check

0

1

Quick Start File Import Export Run View Plot Utility Settings Help File Run

S 🖶 📐 Wing 0 Pressure coefficient Geometry Max: 9.9348e-01 Min: -9.9168e-01 ⊕ ⊕ Discretization 🗄 🛰 HTP - 0.9935 Geometry α Flight Condition Enable the parameter study Computation Optimization - 🚹 Parameter stud 0.206 Results - 0.4000 - Cdi(AOA) Lift-to-Drag(v,h) - 0.2000 • Cdi(Cl) • • Cd(Cl) Wing 0 - 🔠 Wing Summa -0.007 Enable parameter study Objective Static margin Select "Static margin" # Steps 20 Design Variables # Design Variables: A 0 -0.6000 Wings Flight condition Computation Wing 0 HTP Sweep @ [deg] Dihedral δ [deg] Flaps Discretization -0.8000 General S-pos [m] Chord [m] Twist a [deg] Name Value Min Max On/Off 0 0.7 -0.9917 0.0 Origin x [m 0.0 0.0 0.0 0.0 Origin y [m 0.0 0.0 0.0 Origin z [m] 0.0 Reference chord [-] 0.25 0.25 0.25

٥ X

📐 Aeolus - Aero Sketch Pad V3.10 : 6

Quick Start File Import Export Run View Plot Utility Settings Help

– ø ×

📐 Aeolus - Aero Sketch Pad V3.10 : 6

Quick Start File Import Export Run View Plot Utility Settings Help

Aeolus - Aero Sketch Pad V3.10 : 6

Quick Start File Import Export Run View Plot Utility Settings Help Plot Utilty Colors C File Run View X • +X | -X | +Y -Y +Z | Z ⊕ Q (□ 🔲 🗲 🧷 Ø 🖶 📐 Wing O - 🖉 Geometry 0.14 0.13 B & Discretization 👜 👞 нтр 0.12 Geometry Read the required mounting 0.11E-& Discretization 0.10- α Flight Condition Computation angle for a 2% static margin. 0.09 Optimization Parameter study 80.0 E Check Results 0.07 0.06 Last evaluation - 🗄 Aircraft Summary 0.05 CI(AOA) - Odi(AOA) 0.04 - • Cm(AOA) 0.03 Lift-to-Drag(v,h) Static margin --- + Cdi(Cl) 0.02 - • Cd(Cl) 0.01Iteration Design variable Static margin [0.0, 0.0] 1.337e-01 0.00 [0.3333333333333333, 0.333... 1.062e-01 0.66666666666666666, 0.666... 7.867e-02 -0.01[1.0, 1.0] 5.122e-02 [1.3333333333333333, 1.333... 2.382e-02 -0.02 [2.0, 2.0] -3.080e-02 -0.03 [2.333333333333333, 2.3333... -5.802e-02 -0.04 [3.0, 3.0] -1.123e-01 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 -0.12 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 $0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0$

Design value

٥ ×

📐 Aeolus - Aero Sketch Pad V3.10 : 6

Quick Start File Import Export Run View Plot Utility Settings Help

Thank you

Dipl.-Ing. Uwe Schuster January 2019 www.aeolus-aero.com